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Abstract

In this paper a high frequency DC-DC converter fed by fuel cell is analyzed. The converter consists of full bridge inverter 

connected to full bridge rectifier through two planar transformers and parallel resonant. The mathematical model of the 

fuel cell is first presented and the average model of the converter is elaborated. The developed model is used to study the 

characteristics and dynamics of the DC-DC converter in closed loop. Validation of the proposed model is verified through 

simulation. 
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I-INTRODUCTION 

    The reduction of gases emitted by the thermal vehicles is 

justifiable reason to motivate many researchers to investigate 

alternatives to conventional internal combustion engine.  

among these studies, the development of hybrid electric 

vehicles that use clean and renewable energy sources as fuel 

cells[1]-[2]-[3]. 

Fuel cell is electrochemical energy conversion device which 

directly produce electricity, water and heat by processing 

hydrogen and oxygen[4]. Generally DC voltage generated by a 

fuel cell stack varies widely and is low in magnitude; it is 

between 20V and 50V at full-load, a DC-DC converter is 

responsible for absorbing power from the fuel cell, and 

therefore should be designed to match fuel cell ripple current 

specifications and should not conduct any negative current.[5]  

Several DC-DC converters, such as push-pull, half bridge and 

full-bridge converters can be used to boost the low voltage of 

the fuel cell to the required level. The mathematical models of 

these converters are very important for engineers to study the 

system dynamic behavior. However, the power converter models 

are normally time varying due to the switching action [6] 

Many papers are published in this field. [7] Proposes an 

approach for fuel cell DC-DC converter controller using 

dynamic evolution control. Several approaches  are applied to 

analyze  the converters as The average models and small signals  

 

 

.Dynamic performance of PWM dc-dc converter has been 

analyzed using state space averaging method and small 

signals[8] .Averaged Model of a high power Dual-Phase Boost 

DC-DC Converter for Fuel Cell Power Supply[9]. 

In reference [10], the authors study the average circuit model of 

non-ideal basic converter operating in discontinuous conduction 

mode. Reference [11] studied the control method of boost and 

buck converter for the ultra-capacitor-fuel cell hybrid stationary 

power applications using small signal ac equivalent circuit 

model. Based on the above issues, this paper proposes an 

average model for fuel cell DC-DC converter which can 

regulate the output voltage of the converters to avoid rapid load 

voltage variations. The paper is organized as: The section II 

discusses a model of fuel cell .The section III details   the 

topology and the operation mode .In section IX, the average 

model of DC-DC converter is presented . Section X evaluates 

the performance of small signal model and the controller 

design. And finally the conclusion is presented in section XI. 
 

II-FUEL CELL MODEL 

   The fuel cell directly converts chemical energy into electrical 

energy.It reacted hydrogen and oxygen to produce electricity, 

water and heat, according to the following overall chemical 

reaction. HeatyElectricitOHOH  2222       (1) 

The following figure illustrates the principle of operation of a 

fuel cell. 
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Figure 1: Illustration of a typical Fuel Cell structure 

 

The equation of voltage fuel cell is the following: 

ohmicVConcVactVNerstECellV                                      (2) 

Where: NerstE  is the Nernst potential , actV  is the activation 

loss , ohmV  is the ohmic loss and ionConcentratV  is the 

concentration  loss .Expression of different voltages are: 
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Where 2HP  , 2OP  and 
OHP 2 are the hydrogen, oxygen and 

vapor  partial pressures (atm), respectively. Moreover, T ,is the 

cell temperature (K), R  is the universal gas constant (8.31441 J 

mol-1 K-1), F is the Faraday constant (96484.56 C mol-1) , n is 

the number of electrons participating in the reaction, iL is the 

limiting current density, i0 is the exchange current density and 

  is the electron transfer coefficient of the reaction. FCV is the 

fuel cell voltage , it can be written as follow: CellFC NVV   

Where N is the number of fuel cell in a stack. The equivalent 

electrical circuit of a fuel cell is as follows: 
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Figure 2: Fuel Cell model 

Parameters of the used fuel cell are shown in the following 

table: 
Parameter Name Parameter Value 

Temperature T 328 °K 

Partial pressure of Hydrogen 2HP  1.5 atm 

Partial Pressure of oxygen 2OP  1 atm 

Partial pressure of water OHP 2  1atm 

Exchange  current 0i  0.002A 

Cell area A 0.0825m2 

Limiting current  Li  100A 

 
Table 1:Fuel cell parameters 

 
 

Figure 3: Fuel cell voltage versus current in various temperatures 

  
Figure 4: Fuel cell voltage versus current in various pressures 

 

III-TOPOLOGY AND OPERATION Of CONVERTER 

a)Chosen Topology 

Basically, DC-DC converters can be divided into two categories 

depending on using the galvanic insulation or not: non-isolated 

converter or isolated converter [12] .as the non isolated 

converters are simple, but they require a bulky input inductor to 

limit the current ripple in the components. But, in many cases, 

isolation between the input and the output is required, because 

of operating specifications or for security reasons. It is for this 

reason, the use of the isolated DC-DC converters. The chosen 

topology is divided in three parts: a high frequency DC-AC 

converter, a high-frequency transformer and an AC-DC 

converter as   shown in Figure 5. 

The converter is consists of : 

-Full bridge side fuel cell, it is constituted for bidirectional 

switches ((T11, D11),(T12 ,D12),(T13,D13) and (T14 ,D14)). 

-Full bridge side high voltage, it is constituted for unidirectional 

switches D1, D2 ,D3 and  D4. 

-The resonant filter consists of capacitor (Cr) and inductance 

(Lr). its role is to minimize switching losses. 

-Two planar transformers in high frequency, plays  a important 

role in this Topology. It provides both galvanic isolation and 

energy storage through winding leakage inductance. The 

primary is coupled in parallel and the secondary are in series. 
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Figure 5.Topology of converter 

 

b)Operation converter 

The bridge side fuel cell is controlled to generate a high 

frequency wave voltage at its transformers. Ts and d denotes 

respectively the switching period and the controlled duty ratio. 

Figure 6 shows the operation converter. 1C , 2C , 3C and 4C denote 

,respectively, the control signals of the switches K1 ,K2,K3 and 

K4 
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Figure 6: Key waveforms of the converter 

 There is two modes: 

Mode 1: In this mode, the diagonally opposite switches (K1 and 

K4 or K2 and K3) are turned on during sdT as shown in the 

following table. In this case fuel cell delivers the energy to load 

via resonant filter, two planar transformers and diodes. 

 

Switches  sdT,0 ] 
[ )]12(

2
,

2
dsTsT

 

(K1,K4) 1 0 

(K2,K3) 0 1 

 

 Mode 2: All switches are off and load current flow through 

diodes. 

 

IX-AVERAGE MODEL OF DC-DC CONVERTER 

For modeling the DC-DC converter, it is assumed: 

- In the conducting state, each MOSFET is equivalent to a 

resistor tr . 

-In the conducting state, each diode is equivalent to a resistor. 

dr  

-The charge and discharge of the capacitor rC  are 

instantaneous. 

-The resistance of each non-conducting switch is infinite. 

-The leakage inductance and the magnetizing of both 

transformers are neglected. 

To model the converter we choose two state variables including 

capacitor voltage )(0 tV and inductor current )(tLi .The system 

state space representation is 

BuAxx .                                                                                  (6) 

DuCxy                                                                                   (7) 

Where is u is the vector of inputs, y is the outputs and x is the 

status variables vector. 

 TtovtLix )(),( , pacVu   and )(tovy 
 

a)Mode 1 

When the fuel cell has been started up, the system works in the 

stable operation mode as shows the table 1.In this case, the 

power flows from the fuel cell to the load through two 

diagonally transistors, resonant circuit, planar transformers and 

two diodes. The equivalent circuit is as follows 

Rch
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Figure 7: Equivalent circuit (mode 1) 

 

If all impedance is transferred to the secondary winding, the 

equivalent circuit becomes the following 
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Figure 8: Referred secondary of the equivalent circuit 

 

Where: 

2*221 ntrdreqR                                                                       (8) 
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201
n
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CeqC                                                                           (10) 

If we apply Kirchhoff’s law 
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In the interval [ sdT,,0 ], the state space model and matrices are:   

uBxAx 11
.  and xCy 1    
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b)Mode 2 

The inductor current cannot equal to zero suddenly, so the two 

diodes are in conduction despite all switches are off. The 

equivalent circuit is show by figure 9
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 Figure 

9: Equivalent circuit (Mode 2) 

The equivalent circuit of the DC-DC converter referred to  

secondary winding is show in figure 10 
L

chR
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chi

oV
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DR

 
 

Figure 10: Referred secondary of the equivalent circuit(mode 2) 

During the interval [ sTsdT , ], the state space model and matrices 

are:  

uBxAx 22
.   

xCy 2  
Using Kirchoff law, we obtain : 
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(20)   

The last half cycle is identical to the first half cycle, so during 

switching period, mode 1 and mode 2 are repeated twice. 
Finally, the averaged model state equation can be obtained  

 

uBAxx .

                                                                          (21)
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Average large signal circuit model is often derived as shown in 

figure 11.
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 Figure 11: circuit model 
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The elaborated model is simulated in Matab/Simulink with the 

following parameters: 

 

Parameter Value 

Fuel  Cell Voltage VpacV 24  

Swtching Frequency Khzf 20  

Resonant inductor HrL 2  

Resonant capacitor FrC 32  

Filter inductor mHL 20  

Filter capacitor FC 4000   

Load resistance  50chR  

Diode on resistor  006.0dr  

Mosfet on resistor  005.0tr  

Turn of transformer 71 n  

 

In time 0.2s, the duty cycle change from 0.2 to 0.3. Figure 12 

shows  the simulation result. 

 
 

Figure 12: waveform of output voltage in changed duty 

Cycle 

In time 0.4s, the resistor of load varies from 50Ω to 25Ω 

 
 

Figure 13: waveform of output voltage in changed load 

 

V-SMALL SIGNALS ANALYSIS 

    The variables were analyzed to direct components (upper case 

letter) and a small ac perturbation (represented by(~) 

 xXx ~ , dDd
~

 , 0
~

00 vVv  and pacvpacVpacv ~
            

(28) 

 ..~ xx 
 
because 0.  pacBVAXX                                           (29) 

pacVBACVpacVBAX .1.0.1   

We can calculate the input to output transfer function 
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The following figure shows the dc output to input gain versus 

duty cycle    D. This figure proven that gain is linear versus the 

duty cycle. 

 
Figure 14: gain of converter versus duty cycle 
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when replacing each variable by its expression in (21) and using 

equation (29)  

xdBBxdAA
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Usually pacvdBBxdAA ~.
~

)21(2~~
)21(2   is negligible, so the 

equation (31) becomes  
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             (32) 

Using the Laplace transform: 
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The expression of the output
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If xdCC ~~
*)21(2   is negligible, dXCCxCv

~
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0
~              (35) 

Apply the Laplace transform to the equation(35) and using 

equation(33), we obtained 
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                       (36)   

)(1 sH  and )(2 sH  denote respectively  the transfer function from 

the output voltage to duty cycle and the transfer function from 

the output voltage to fuel cell voltage. 
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Where trDnDdrR 24)21(2 
 

A  PID controller is used for regulating the output voltage of the 

converter DC-DC. The output voltage measured is compared 

with reference and compensates by changing in the duty cycle of 

switches as show the figure 14. 

 

 

 

 

 

 
Figure 14: Closed loop control 

 

Figure 15 shows the output voltage reference and the output 

voltage measured. It observed that for output voltage orefV  

from 150V to 200V instantaneously, the output voltage oV

present a overtake equal to 5V. 

 
Figure 15: Small signal model for small various d 

 

 

CONCLUSION 

This paper has addressed the unidirectional DC-DC converter to 

be used in the fuel cell application in vehicle electrical .we have 

studied the average model of the converter .The developed  

model  is verified in two cases (changed of duty cycle and  

load).and we are presented the small signal model and transfer 

functions  from the output voltage to duty cycle and to fuel cell 

voltage .to improve the converter performance and stability , we 

chose the PID controller in the closed loop to adjust the output 

voltage in changing duty cycle. 
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